Non-linear blocking of portmanteaus:
a case study on Laz

Ömer Demirok, Boğaziçi University

Nanolab, 12 June 2020

1 Introduction

• This talk deals with (verbal) root allomorphy patterns in Laz (South Caucasian).
 – In particular, we will investigate how prefixes interact with root allomorphy.
• Background on the morphotactics of the Laz verb: (Öztürk and Pöchtrager, 2011)
 – exhibits a concatenative character: prefixes & suffixes
 – follows the (partial) template in (1)

(1) ... DIR + AGR + PRV + √ + ASP + TNS + AGR ...
 APPL CAUS PASS MODAL

* PRV = pre-root-vowel. the trickiest part of the Laz verb!
 – selection/ co-occurrence restrictions are abundant

(2) some examples:
 a. ... AGR + PRV + √ + [ASP] + TNS + AGR ...
 b. ... AGR + [PRV] + √ + [ASP] + TNS + AGR ...

Today’s focus

– √ +ASP portmanteaus
– Trying to make sense of when √ +ASP portmanteaus are blocked.
2 A (very) brief background on ASP marking in Laz

- Laz marks imperfective overtly but lacks overt perfective marking.

(3) t’ax -um -an
 break IMPF PRS.3PL
 ‘They (are) break(ing) it.’
 IMPERFECTIVE+PRESENT

(4) t’ax -es
 break PST.3PL
 ‘They broke it.’
 PERFECTIVE+PAST

(5) t’ax -um -’ -es
 break IMPF AUX PST.3PL
 ‘They were breaking it.’
 IMPERFECTIVE+PAST

- I take past forms that lack imperfective marking to be perfective.

- I pretend that possibly many ASP features are simply IMPF and PFV features.

(6) \[\text{PFVP} \quad \text{PFV} \quad \text{xVP} \]

(7) \[\text{IMPF} \quad \text{xVP} \]

• There is a huge complication! imperfective marking is variant: \{-um, -am, -er, -ur\}

(8) a. k’i -es
 scream PST.3PL
 ‘They screamed.’

b. k’i -am -an
 scream IMPF PRS.3PL
 ‘They are screaming.’

(9) a. ğur -es
 die PST.3PL
 ‘They died.’

b. ğur -ur -an
 die IMPF PRS.3PL
 ‘They are dying.’

(10) a. a- t’ax -es
 ABIL break PST.3PL
 ‘They were able to break (it).’

b. a- t’ax -er -an
 ABIL break IMPF PRS.3PL
 ‘They are able to break (it).’

• I want to keep the story simple, even though there is obviously more to it. Hence, I entirely put aside the variation in the realization of IMPF. But see Section 6.
3 √ + ASP portmanteaus: Description

(I use the -eri marked participle forms to show the 'elsewhere' forms.)

• EAT+IMPF portmanteau

(11) \textit{imxor} -an
\hspace{1cm}\text{EAT.IMPF PRS.3PL}
\hspace{1cm}‘They are eating.’
\hspace{1cm}cf. \ t’ax-um-an

(12) \textit{šk’om} -es
\hspace{1cm}\text{EAT PST.3PL}
\hspace{1cm}‘They ate.’
\hspace{1cm}cf. \ t’ax-es

(13) \textit{imxor} -t’ -es
\hspace{1cm}\text{EAT.IMPF AUX PST.3PL}
\hspace{1cm}‘They were eating.’
\hspace{1cm}cf. \ t’ax-um-t’-es

(14) \textit{šk’om} -eri
\hspace{1cm}\text{EAT PRTCP}
\hspace{1cm}‘having eaten’
\hspace{1cm}cf. \ t’ax-eri

 b. *\textit{imxor-es}
 c. *\textit{imxor-eri}

• MOVE+PFV portmanteau

‘Cvu → Cu’ is regular phonology

(16) \textit{mo-}l -ur -an
\hspace{1cm}\text{TWRD-SPKR MOVE IMPF PRS.3PL}
\hspace{1cm}‘They are coming.’
\hspace{1cm}IMPERFECTIVE+PRESENT

(17) \textit{mo-}xt’ -es
\hspace{1cm}\text{TWRD-SPKR MOVE.PFV PST.3PL}
\hspace{1cm}‘They came.’
\hspace{1cm}PERFECTIVE+PAST

(18) \textit{mo-}l -ur -t’ -es
\hspace{1cm}\text{TWRD-SPKR MOVE IMPF AUX PST.3PL}
\hspace{1cm}‘They were coming.’
\hspace{1cm}IMPERFECTIVE+PAST

(19) \textit{mo-}lv -eri
\hspace{1cm}\text{TWRD-SPKR MOVE PRTCP}
\hspace{1cm}‘having come’
\hspace{1cm}PARTICIPLE

(20) *\textit{mo-}xt’-ur-an, *\textit{mo-}lv-es, *\textit{mo-}xt’-eri
• SAY+IMPF portmanteau & SAY+PFV portmanteau

(21) it’ur -an
 SAY.IMPF PRS.3PL
 ‘They are saying.’
 IMPERFECTIVE+PRESENT

(22) t’k’v -es
 SAY.PFV PST.3PL
 ‘They said.’
 PERFECTIVE+PAST

(23) it’ur -t’ -es
 SAY.IMPF AUX PST.3PL
 ‘They were saying.’
 IMPERFECTIVE+PAST

(24) zit’ -eri
 SAY PRTCP
 ‘having said’
 PARTICIPLE

(25) a. *t’k’v-an, *t’k’v-eri
 b. *it’ur-es, it’ur-eri
 c. *zit’-am-an, *zit’-um-an, *zit’-ur-an, *zit’-er-an, zit’-an
 d. *zit’-es

Q: Why don’t we take it’ur to be it’+ur where -ur is a regular IMPF marker?

(26) a. t’ax -um -an
 break IMPF 3PL.PRS
 ‘They are breaking (it).’
 b. t’ax -um -s
 break IMPF 3SG.PRS
 ‘3SG is breaking (it).’

(27) a. ġur -ur -an
 die IMPF 3PL.PRS
 ‘They are dying.’
 b. ġur -un
 die IMPF.3SG.PRS
 ‘3SG is dying.’

(28) a. it’ur -an
 say.IMPF 3PL.PRS
 ‘They are saying.’
 b. it’ur -s
 say.IMPF 3SG.PRS
 ‘3SG is saying.’

- -ur+3SG.PRS is always -un
- it’ur+3SG.PRS \neq *it’un.
Q: Did we find the right ‘elsewhere’ forms?

– Let’s look at the ‘causativized’ forms.
– Laz can ‘causativize’ transitive verbs, too.

(29) t’ax -es
 break PST.3PL
 ‘They broke (it).’

(30) o- t’ax -ap -es
 CAUS break CAUS PST.3PL
 ‘They made him break (it).’

– Both EAT and SAY have -ap causative forms. (MOVE has a distinct portmanteau)

(31) a. PFV portmanteau IMPF portmanteau ‘elsewhere’
 EAT -imxor šk’om

b. imxor -an
 EAT.IMPF PRS.3PL
 ‘They are eating.’

(32) a. o- šk’om -ap -es
 CAUSEE EAT CAUS PST.3PL
 ‘They made him eat.’

b. o- šk’om -ap -am -an
 CAUSEE EAT CAUS IMPF PRS.3PL
 ‘They are making him eat.’ ⇐ portmanteau loses

c. *o-imxor-ap-am-an, *o-imxor-ap-an

(33) PFV portmanteau IMPF portmanteau ‘elsewhere’
 SAY t’k’v it’ur zit’

(34) a. o- zit’ -ap -es
 CAUSEE SAY CAUS PST.3PL
 ‘They made him say.’ ⇐ portmanteau loses

b. o- zit’ -ap -am -an
 CAUSEE SAY CAUS IMPF PRS.3PL
 ‘They are making him say.’ ⇐ portmanteau loses

c. *o-t’k’v-ap-es, *o-it’ur-ap-(am)-an
4 √ + ASP portmanteaus: LSTs

<table>
<thead>
<tr>
<th>SUMMARY</th>
<th>PFV portmanteau</th>
<th>IMPF portmanteau</th>
<th>‘elsewhere’</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAT</td>
<td>-</td>
<td>imxor</td>
<td>šk’om</td>
</tr>
<tr>
<td>MOVE</td>
<td>xt’</td>
<td>-</td>
<td>lv</td>
</tr>
<tr>
<td>SAY</td>
<td>t’k’v</td>
<td>it’ur</td>
<td>zit’</td>
</tr>
</tbody>
</table>

- I assume Phrasal Spell-out \cite{Caha:2009,Starke:2009}.
 - In particular, following \cite{Caha:2019a,Caha:2019b}, I assume that a root portmanteau is a lexically stored tree (LST) that contains a particular restriction on what got inserted in the previous cycle:

\[(35)\] mice \iff pluP

\begin{center}
\begin{tikzpicture}
\node (B) {mice};
\node (A) [left of = B] {pluP};
\node (C) [left of = A] {plu};
\node (D) [left of = C] {mouse};
\end{tikzpicture}
\end{center}

- Accordingly, our LSTs for the √ + ASP portmanteaus in Laz:

\[(36)\] t’k’v \iff PFVP

\begin{center}
\begin{tikzpicture}
\node (B) {t’k’v};
\node (A) [left of = B] {PFVP};
\node (C) [left of = A] {PFV};
\node (D) [left of = C] {zit’};
\end{tikzpicture}
\end{center}

\[(37)\] xt’ \iff PFVP

\begin{center}
\begin{tikzpicture}
\node (B) {xt’};
\node (A) [left of = B] {PFVP};
\node (C) [left of = A] {PFV};
\node (D) [left of = C] {lv};
\end{tikzpicture}
\end{center}

\[(38)\] it’ur \iff IMPFP

\begin{center}
\begin{tikzpicture}
\node (B) {it’ur};
\node (A) [left of = B] {IMPFP};
\node (C) [left of = A] {IMPF};
\node (D) [left of = C] {zit’};
\end{tikzpicture}
\end{center}

\[(39)\] imxor \iff IMPFP

\begin{center}
\begin{tikzpicture}
\node (B) {imxor};
\node (A) [left of = B] {IMPFP};
\node (C) [left of = A] {IMPF};
\node (D) [left of = C] {šk’om};
\end{tikzpicture}
\end{center}

- For concreteness, I will also sometimes refer to the decomposition in \cite{Ramchand:2008}.
 (Nothing I will say hinges on this, though.)

\[(40)\] ... , šk’om, zit’ \iff initP

\begin{center}
\begin{tikzpicture}
\node (B) {... , šk’om, zit’};
\node (A) [left of = B] {initP};
\node (C) [left of = A] {init};
\node (D) [left of = C] {procP};
\node (E) [left of = D] {proc};
\node (F) [left of = E] {init};
\end{tikzpicture}
\end{center}

\[(41)\] ... , lv, t’ax \iff initP

\begin{center}
\begin{tikzpicture}
\node (B) {... , lv, t’ax};
\node (A) [left of = B] {initP};
\node (C) [left of = A] {init};
\node (D) [left of = C] {procP};
\node (E) [left of = D] {proc};
\node (F) [left of = E] {init};
\node (G) [left of = F] {proc};
\node (H) [left of = G] {init};
\node (I) [left of = H] {proc};
\node (J) [left of = I] {init};
\end{tikzpicture}
\end{center}
5 What can and cannot block these portmanteaus?

- Linearly intervening morphemes block portmanteaus (Embick [2010]).
 - Broadly speaking, this is ambiguously a structural effect or a linear effect.
 - **Disambiguation:** Can linearly uninvolved morphemes block portmanteaus?
 * If portmanteaus are inserted into a stretch of linearly adjacent nodes (Ostrove 2018), we do not expect linearly uninvolved morphemes to block portmanteaus.
 * If portmanteaus are inserted into phrases, we do expect to find such *non-linear* blocking effects.
- And we do find such non-linear blocking effects in Laz!
 - linearly uninvolved morphemes can block portmanteaus,
 - but perhaps the more important question: which ones can?

5.1 What does not block √ portmanteaus?

- There are four preverbal ‘slots’:
 POLARITY + SPATIAL + AGREEMENT + PRV + √ + ...

(42) va- ce- v- o- çum-ap -i
 NEG DOWN 1 CAUS HIT CAUS PST
 ‘I didn’t let them beat him.’

5.1.1 Polarity Markers

- Polarity markers NEG and AFF do not block portmanteaus

(43) do- t’k’v -es
 AFF SAY.PFV PST.3PL
 ‘They did say.’
 elsewhere *zit’

(44) var- imxor -an
 NEG EAT.IMPF PRS.3PL
 ‘They are not eating.’
 elsewhere *šk’om*

(45) va- mo- xt’ -es
 NEG TWRD-SPKR MOVE.PFV PST.3PL
 ‘They did not come.’
 elsewhere *lv*

1 Apparently there are exceptions (Gouskova and Bobaljik [2019]).
• I have no direct evidence that locates NEG in the fseq.
 – The only thing that can precede it is a run-of-the-mill subordinator na-

(46) [dišk’a na- var- čit -u] t’k’u
 wood C NEG CHOP PST.3SG he.said
 ‘He said he didn’t chop wood.’

 – But there is some variation in the realization of NEG contingent on mood.

(47) va t’ax -i
 NEG BREAK PST.2SG
 ‘You didn’t break it.’

(48) vati t’ax -i -k’o
 NEG.IRR BREAK PST.2SG IRR
 ‘You wouldn’t break it’
 ‘You weren’t gonna break it.’

(49) mot t’ax -um
 NEG.IMP BREAK IMPF
 ‘Don’t cry!’ grammaticalized from ‘Lit: why(=mot) are you crying?’

 – Given that NEG has an irrealis form and IRR is apparently above tense, I will assume
 that NEG is at least above ASP in the fseq.

 – Then, it has no way of blocking AspP portmanteaus like imxor ⇐⇒ IMPFP
 IMPF šk’om

5.1.2 Prefixal Person Agr

• Prefixal agreement does not block portmanteaus, either.

(50) v- imxor
 1 EAT.IMPF
 ‘I am eating.’

(51) p’- t’k’v -i -t
 1 SAY.PFV PST PL
 ‘We said.’

 – I cannot get into the notoriously complex agreement system of South Caucasian.

 – I will follow Blix (2020) who takes (person and number) agreement features to be just
 below the tense features in the f-seq.

 * suffixal agreement is clearly located around the tense region, e.g. -es: PST.3.PL

 * crucially, there is evidence that suffixal and prefixal agreement together spell out a
 contiguous region in the f-seq. See Blix (2020) for details.
In support of this, I will mention an additional portmanteau (?):

(52) a. lv → MOVE
 b. xt’ → MOVE+PFV
 c. ft’ → MOVE+PFV+1

(53) gama- ft’ -i
 OUT MOVE.PFV.1 PST
 ‘I went out.’

The insertion of ft’ is contingent on the successful insertion of xt’ (i.e. a PFVP)

(54) ft’ ⇐⇒
 “first person features” xt’

(55) xt’ ⇐⇒ PFVP
 \PFV \lv

In short: (I assume) tense features > agreement features > asp features

If so, prefixal agreement has no way of blocking AspP portmanteaus containing a root.

5.1.3 Spatial Markers

- Spatial markers (which form a large set consisting of simplex and complex forms) do not
 block portmanteaus, either.

(56) oxori-še gama- xt’ -es
 house-ABL OUT MOVE.PFV PST.3PL
 ‘They went out of the house.’
 elsewhere lv

(57) livadi-s do+lo- xt’ -es
 garden-DAT INTO.DOWN MOVE.PFV PRS.3PL
 ‘They went down into the garden.’

2To my knowledge, pxt’ → ft’ is not a regular phonological process in Laz. But this may turn out to be wrong.
– I assume that spatial markers spell-out a PathP at the very bottom of the f-seq. See [Eren (2016)] on spatial markers in Laz.

\[(58)\]

\[
\begin{array}{c}
\text{initP} \\
\quad \text{init} \\
\quad \text{procP} \\
\quad \text{proc} \\
\quad \text{resP} \\
\quad \text{res} \\
\quad \text{PathP} \\
\quad \text{A} \\
\quad \text{B} \\
\quad \text{C}
\end{array}
\]

– Following [Starke (2018)], I assume that the PathP is moved to the left of the verb via comp-to-spec movement in order to create a constituent for inserting the root.

\[(59)\]

\[
\begin{array}{c}
\text{initP} \\
\quad \text{mo} \\
\quad \text{lv} \\
\quad \text{PathP} \\
\quad \text{initP} \\
\quad \text{A} \\
\quad \text{B} \\
\quad \text{C}
\end{array}
\quad \Rightarrow
\begin{array}{c}
\text{initP} \\
\quad \text{procP} \\
\quad \text{resP} \\
\quad \text{res} \\
\end{array}
\]

\[(60)\]

\[
\begin{array}{c}
\text{initP} \\
\quad \text{procP} \\
\quad \text{resP} \\
\quad \text{res}
\end{array}
\quad \Rightarrow
\begin{array}{c}
\text{initP} \\
\quad \text{procP} \\
\quad \text{resP} \\
\quad \text{res}
\end{array}
\]

\[(61)\]

\[
\begin{array}{c}
\text{mo} \\
\quad \text{PathP} \\
\quad \text{A} \\
\quad \text{B} \\
\quad \text{C}
\end{array}
\quad \Rightarrow
\begin{array}{c}
\text{initP} \\
\quad \text{procP} \\
\quad \text{resP} \\
\quad \text{res}
\end{array}
\]

– Recall that the existence of a PathP in the structure does not block \(xt' \iff PFVP\).

\[(62)\]

\[
\begin{array}{c}
\text{mo-xt'-es} \\
\text{TWD-SPKR \ MOVE.PFV \ PST.3PL}
\end{array}
\quad \Rightarrow
\begin{array}{c}
\text{PFV} \\
\text{lv}
\end{array}
\]

‘They came.’ elsewhere \(lv\)

– This is predicted:
– When PFV is merged, there is no match for PFVP

```
  PFV
 / \  
m o  l v
```

– PathP has been comp-to-spec moved, hence it is **not a projecting specifier**

(Starke, 2018; Caha, 2019).

– Therefore, it can be moved out of the way, which allows for insertion of (64).

(63) \[
 \begin{array}{c}
 \text{mo} \\
 \text{PFVP} \\
 \text{PFV} \\
 \end{array}
\]

(64) \[
 \begin{array}{c}
 \text{xt'} \Longleftrightarrow \\
 \text{PFVP} \\
 \text{PFV} /l v/
 \end{array}
\]

5.2 What does block \(\sqrt{_}\) portmanteaus?: PRVs

- We’re left with pre-root-vowels, and they all block \(\sqrt{_}\) portmanteaus!

- The PRV is a slot that can host one of these vowels: \(\{o, u, i, a\}\)

 (Demirok, 2011, 2013; Öztürk, 2013; Taylan and Öztürk, 2014)

 – \(o\)- occurs with an additional overt suffix. So, I focus on \(\{u, i, a\}\) here.

(65) \[
 \begin{array}{c}
 \text{t'ax} \\
 \text{BREAK PST.3SG}
 \end{array}
\]

‘She broke it.’

(66) \[
 \begin{array}{c}
 \text{o-} \\
 \text{t'ax} \\
 \text{-ap} \\
 \text{-u}
 \end{array}
\]

CAUS BREAK CAUS PST.3SG

‘She made him break it.’

causative

(67) \[
 \begin{array}{c}
 \text{u-} \\
 \text{t'ax} \\
 \text{-u}
 \end{array}
\]

APPL BREAK PST.3SG

‘She broke it for him.’

applicative (nonreflexive)

(68) \[
 \begin{array}{c}
 \text{i-} \\
 \text{t'ax} \\
 \text{-u}
 \end{array}
\]

DEFC BREAK PST.3SG

‘(Someone) broke it.’

‘She broke it for herself.’

impersonal passive

reflexive-applicative

(69) \[
 \begin{array}{c}
 \text{a-} \\
 \text{t'ax} \\
 \text{-u}
 \end{array}
\]

APPL+DEFC BREAK PST.3SG

‘(Someone) broke it for her.’

‘She was able/had to break it.’

impersonal passive+applicative

agentive ability/compulsion modal
• All PRVs block $\sqrt{+}$ASP portmanteaus!

– The MOVE.PFV portmanteau is blocked by the prefix a-.

(70) mo- xt’ -u
 TWRD-SPKR MOVE.PFV PST.3SG
 ‘She came.’

(71) mv- a- l -u
 TWRD-SPKR APPL+DEFC MOVE PST.3SG
 ‘She was able to come.’

(72) *mv-a-xt’-u, *mo-l-u

– EAT.IMPF portmanteau is blocked by the prefix u-.

(73) imxor -an
 EAT.IMPF PRS.3PL
 ‘They are eating.’

(74) u- šk’om -am -an
 APPL EAT IMPF PRS.3PL
 ‘They are eating something that belongs to him.’

(75) *uimxoran, *umxoran

– Notably, we are not dealing with some kind of Phonological Selection:

(76) a. t’k’ -u
 SAY.PFV PST.3SG
 ‘She said it.’

b. *i-t’k’-u, *a-t’k’-u, *u-t’k’-u

(77) i- zit’ -u
 DEFC SAY PST.3SG
 ‘It was said.’/(Someone) said it.

(78) a- zit’ -u
 APPL.DEFC SAY PST.3SG
 ‘She was able to say it.’

(79) u- zit’ -u
 APPL SAY PST.3SG
 ‘She said something about him.’
But, where are PRVs?

- PRVs deserve a PhD dissertation. But I think it is safe to say this much:
 In plausible logical forms, causative, passive, applicative and root modal projections, in particularly ability modals, compose with event predicates
 \[\text{(Hacquard [2006], Pylkkänen [2002], Demirok [2018])}\]
 - If so, they must be lower in the f-seq than aspect and tense nodes.
 - I assume that they all spell-out complex left branches in the ‘VP zone’, and are lower in the f-seq than ASP nodes.

\[\text{(80)}\]

\[
\begin{array}{c}
\text{ASP} \\
\text{‘pre-root-vowel’} \\
xVP
\end{array}
\]

\[\begin{array}{ccc}
A \\
B \\
C
\end{array}\]

- Crucially, they are different from spatial markers, which are non-projecting specifiers!

\[\text{(81)}\]

\[
\begin{array}{c}
\text{initP} \\
\text{procP}
\end{array}
\]

\[
\begin{array}{c}
\text{init} \\
\text{proc} \\
\text{resP}
\end{array}
\]

\[
\begin{array}{c}
\text{res} \\
\text{PathP}
\end{array}
\]

\[\begin{array}{ccc}
A \\
B \\
C
\end{array}\]

\[\text{(82)}\]

\[
\begin{array}{c}
\text{initP} \\
\text{procP} \\
\text{resP}
\end{array}
\]

\[\begin{array}{ccc}
A \\
B \\
C
\end{array}\]

- Assuming that they are built in a newly spawned workspace, they are merged into the main derivation as projecting specifiers \[\text{(Starke [2018])}\].

* Consequence:
 they cannot be spec-to-spec moved to give way to $\sqrt{-}\text{Asp portmanteaus}$!
5.3 Summary

When does a prefix block a portmanteau?

A prefix that spells out βP will block a portmanteau γP in (87) but not in (88).

If what I have been saying about Laz is right:

- PRVs are on par with the βP in (87). They cannot be moved out, and therefore they ‘non-linearly’ block portmanteaus.
- Spatial prefixes are on par with the βP in (88). They can be spec-to-spec moved (out of the way).
- The features that polarity and agreement markers spell out are higher in the f-seq than γ. So, they are irrelevant.
6 What’s beyond the simple story (& left to future work)

6.1 The variation in the realization of the IMPF

- The semantics of the root largely determines which IMPF marker will surface:
 (Taylan and Öztürk, 2014; Demirok, 2014; Öztürk and Taylan, 2017)

(89) a. -ur unaccusatives (*fall, die, ... but also stay at*)
b. -um (mostly +res) transitives (*break, ... but also drink, want*)
c. -am unergatives, some transitives, with overt causative suffixes
 (*scream, shine, kill, ...*)
d. -er always co-occurs with PRV i- or a-
 (psych verbs, passives, anticausatives)

(90) a. -um & -am say there is an ERG marked external argument
b. -ur & -er say there is no ERG marked external argument

- In Demirok (2014), I present a preliminary attempt in characterizing the LSTs for these IMPF variants

b. -am \(\iff\) [IMPFP IMPF [initP init [procP proc]]]
c. -ur \(\iff\) [IMPFP IMPF [procP proc [resP res]]]

- problems:
 * Requires a separate DM-like \(\sqrt{\ldots}\) node.
 * There are apparent exceptions
 * How does -um win over -am when it should
• PRV also affects which IMPF marker will surface: (Demirok, 2011, 2013)
 – -um ⇒ -am when APPL is in the structure

(92) t’ax -um -an
 break IMPF PRS.3PL
 ‘They are breaking it.’

(93) u- t’ax -am -an
 APPL break IMPF PRS.3PL
 ‘They are breaking it for her/him.’

(94) i- t’ax -am -an
 REFL.APPL break IMPF PRS.3PL
 ‘They are breaking it for themselves.’

– {-um, -ur} ⇒ -am when CAUS is in the structure

(95) t’ax -um -an
 melt IMPF PRS.3PL
 ‘They are breaking it.’

(96) o- t’ax -ap -am -an
 CAUS break CAUS IMPF PRS.3PL
 ‘They are making him break it.’

– {-um, -am, -ur} ⇒ -er when passive i- or modal a- is present.

(97) i- t’ax -en
 DEFC break IMPF.PRS.3SG
 ‘It is breaking.’

(98) a- t’ax -en
 DEFC.APPL break IMPF.PRS.3SG
 ‘She can break it.’

6.2 Competition between PRVs

• Only one PRV can surface, i+u, i+i, a+i, etc. no combination works.
 – When there is both causative (o-) and ability marking (a-), a- wins.

(99) a. a- t’ax -ap -en
 DEFC.APPL break CAUS IMPF.PRS.3SG
 ‘She can make him break it.’

b. *o-t’ax-ap-en
– When there is both passive (i-) and applicative (u-), a- surfaces (which suggests it is bigger than both)

\[
(100) \quad \text{a-} \quad \text{t’ax} \quad \text{-en} \\
\text{DEFC.APPL} \quad \text{break} \quad \text{IMPF.PRS.3SG} \\
\text{‘Someone breaks it for her.’}
\]

6.3 Order of preverbal elements

• There are four preverbal slots:
Polarity + Spatial + Agreement + Prv + $\sqrt{}$ + . . .

\[
(101) \quad \text{va-} \quad \text{ce-} \quad \text{v- o-} \quad \text{çum} \quad \text{-ap} \quad \text{-i} \\
\text{NEG DOWN 1} \quad \text{CAUS} \quad \text{$\sqrt{}$HIT} \quad \text{CAUS} \quad \text{PST} \\
\text{‘I didn’t let them beat him.’}
\]

– It seems plausible that agr > prv order reflects the f-seq.
– It also makes sense that spatial prefixes would keep getting spec-to-spec moved and reach a peripheral position.
– Why polarity markers have to precede spatial markers, I do not know.

Acknowledgments:
I am grateful to my Laz consultant Ismail Bucaklışi. This paper is at least partly a joint work with Nick Longenbaugh and Daniel Margulis. Three of us wrote a DM-oriented squib on part of this data, for the Morphology course at MIT. Sadly, they no longer do linguistics, which is why this talk could not be joint work. All errors are my own.

References

Öztürk, Balkız, and Markus Pöchtrager. 2011. Pazar Laz. LINCOM.

